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Abstract—To mitigate problems with noisy electroencephalo-
gram (EEG) data and financially inaccessible medical-grade
EEG devices, we present 2 NLP-inspired attention-based neural
networks to improve classification accuracy, tested on 3 unique
datasets. View our code here.

I. INTRODUCTION

An electroencephalogram (EEG) is a device commonly used
for medical purposes. By placing electrodes on a subject’s
head in specific areas, we can record their brain activity
separated into channels from the different electrical signals.
Medical uses of EEGs include diagnosis of epilepsy [1],
diagnosis of parasomnias [2], and determination of cerebral
death [3]. In the field of artificial intelligence, EEG data is
often used in classification tasks, such as emotion recognition
[4]. While there exist many different EEG devices, from
consumer-friendly devices with 4 to 8 channels, to medical and
research grade devices with 64 channels and more, classifying
these signals into meaningful insights is a task that does not
have a ’best’ solution yet. Our paper explores ways to improve
classification accuracy by testing 2 different models on 3
different datasets.

A. Motivation

Electroencephalography (EEG) serves as a pivotal tool in
neuroscience, allowing for the non-invasive monitoring of
brain activity for both clinical and research applications.
Traditional high-density EEG systems, equipped with nu-
merous channels, provide detailed resolution but are often
accompanied by significant financial and logistical constraints.
The cost of these professional-grade EEG systems can range
from approximately $1,000 to over $25,000, depending on the
number of electrodes and additional features [5]. This cost
poses a barrier for many researchers and clinicians operating
under limited budgets.

In contrast, low-cost, portable EEG devices with
fewer channels have emerged as accessible alternatives.
Such systems offer a balance between affordability and
functionality, making EEG technology more accessible to
a broader range of users. Furthermore, studies have shown
that 8-channel EEG setups can reliably detect expected

neural patterns. For instance, an exploration of different EEG
configurations revealed that the 8-channel setup was reliable
in detecting expected trends, with 100% reliability in certain
measures [6]. This finding shows the potential of 8-channel
systems to provide meaningful data.

The primary motivation for this project is to develop an
accessible and effective model for classifying motor imagery
using 8-channel EEG data. This has significant implications
for assistive technologies, particularly for individuals with
disabilities such as locked-in syndrome, who rely on brain-
computer interfaces (BCIs) for communication and interaction
with their environment. By developing reliable classification
of intentions through an affordable and accessible EEG setup,
this project seeks to empower disabled individuals, enhancing
their autonomy and quality of life.

B. Related Works

Zhang et al. [7] proposed two deep learning mod-
els—Cascade and Parallel Convolutional Recurrent Neural
Networks (CRNNs)—to enhance EEG-based intention recog-
nition. The cascade model applies a 2D-CNN for spatial fea-
ture extraction, followed by an LSTM for temporal dynamics,
while the parallel model processes spatial and temporal fea-
tures simultaneously before fusion. Their approach mitigates
the need for extensive preprocessing by learning directly from
raw EEG data, achieving an accuracy of 98.3% in cross-subject
validation and 93% in a real-world BCI system. Despite its
robustness, the study highlights challenges related to EEG
noise and inter-subject variability.

EEG data is generally contaminated with voltage sources
other than neuronal action potentials due to heavy amplifica-
tion and low signal to noise ratios. The various sources of
noise are well studied. Muscle and eye movements both cause
electrical dipoles that can be transmitted to the sensors [8]–
[10]. Power line interference is a primary source of 60 or 50
hz noise [11], [12]. Thermal artifacts and the slow accumu-
lation of sweat can contribute to low frequency noise [12].
Furthermore, small shifts in the electrode position, unstable
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contact, and the half-cell effect are all sources of noise that
can arise from sensors [12].

Data preprocessing is crucial to remove noise from the
signal. Xu et al. [10] proposed a preprocessing framework that
removes artifacts while preserving desired frequency ranges.
Their method combines adaptive filtering and statistical anal-
ysis to retain relevant signal components for downstream
processing. This approach showed signs of enhanced signal
clarity, though it discusses the challenge of distinguishing
between low-amplitude brain signals and artifacts.

Similarly, Sweeney et al. [13] provided a comprehensive re-
view of artifact removal techniques in EEG signal processing.
The study compared methods such as Independent Component
Analysis (ICA), wavelet decomposition, and regression-based
techniques, while discussing the trade-offs between computa-
tional complexity and artifact removal efficacy.

In the area of classification, recent work by Lee et al.
[14] utilized an autoencoder for feature extraction combined
with a ResNet architecture featuring a double augmented
attention mechanism for ADHD classification from EEG
data. This approach enhanced the model’s ability to focus
on informative signal segments, achieving high classification
accuracy. However, the study also noted the challenge of
generalizing across diverse subject data and the need for
robust augmentation techniques to mitigate overfitting.

Overall, these studies emphasize the importance of both
effective data processing and advanced model architectures
in improving EEG-based classification performance. Both of
these aspects will be crucial in addressing remaining chal-
lenges such as noise variability, artifact distinction, and subject
generalization.

C. Problem Definition

Our research aimed to tackle common EEG problems,
such as noisy data and cross-subject accuracy, by drawing
inspiration from NLP. We segmented our project into the
following research goals:

1) Will incorporating NLP techniques like attention into
biomedical data classification improve a model’s accu-
racy by focusing on important temporal features?

2) Can we mitigate problems in low resolution EEG data
by ’filling in gaps’ with masked autoencoding and using
existing high resolution datasets?

3) Can we replicate professional research results using a
beginner EEG device?

Our team was in the possession of an OpenBCI 8-channel
EEG. OpenBCI is an initiative that promotes accessible EEG
technology, selling affordable EEG sensors, headsets, and
circuits. Additional challenges we explored throughout our
design process included:

1) Recording our own dataset with an OpenBCI EEG to
test the contrasts of a low resolution dataset vs. a high
resolution dataset

2) Investigating whether different brain activities (men-
tal/emotional vs. physical/motor) could have similar
classification accuracy with the same model

Overall, we wanted to improve classification accuracy for
EEG data using NLP-inspired techniques, which could then
be applied to a wide range of functions, such as controlling
wheelchairs with one’s mind or allowing consumers to benefit
from low-resolution EEG devices to the same degree as if they
could afford a high-resolution device.

II. METHODOLOGY

Our work consisted of analyzing 3 datasets, each with
unique properties and one of which we recorded ourselves. We
then developed 2 classification models and tested them with
all 3 datasets. The metadata for each is presented in Table I.

TABLE I: Metadata for Emotion Recognition, Motor Imagery,
and OpenBCI Motor Imagery Datasets

ER MI MI OpenBCI
# electrodes 14 64 8
Subjects 28 109 6
Trials per subject 4 14 5x30 or 3x30
Trials total 112 1500+ 720
# classes 4 3 or 4 3
EEG Emotiv Epoc+ BCI2000 OpenBCI
Trial duration 5 mins 2 mins 5 secs

A. Data Collection

Our first dataset was an Emotion Recognition (ER) dataset
[4], where 28 subjects would play video games. They used
the Emotiv Epoc+ device with 14 channels. Their brain
activity was recorded for 5 minutes during the gameplay of
boring, calm, horror, and funny video games, and the dataset
was created to classify emotional states.

The second dataset was a Motor Imagery (MI) dataset [15].
Motor imagery classification with EEGs typically consists
of subjects making some physical movement or imagining
making a physical movement. In this case, 109 participants
were asked to either open and close their right, left, or both
fists, or imagine doing so. The dataset includes data from 64
EEG channels for over 1500 recordings, each either one or
two minutes in length.

The third dataset was a replication of the MI dataset with
our EEG, an OpenBCI Cyton board with 8 channels. The
placement of the electrodes are shown in Figure 1. These were
chosen as left and right hand MI brain activity is generated
from the C3 and C4 areas [9].

For each subject, a video was generated with randomized
prompts. These were either:

1) Text only
2) Audio only
3) Both text and audio

Examples of the visual prompts are shown in Figure 2.

https://openbci.com/


Fig. 1: Electrode placement on OpenBCI EEG for data col-
lection

Fig. 2: Visual prompts for subjects in data collection

The audio prompts had a guitar strum sound in either the
right, left, or both ears. We recorded the brain activity of 6
subjects - 2 male and 4 female - between 18-22 years old.
There were 5 runs, each with 30 five-second prompts. In order,
they were:

1) Physically opening/closing fists with audio and text
prompt

2) Imagining opening/closing fists with text only prompt
3) Imagining direction with audio and text prompt
4) Imagining direction with audio only prompt
5) Imagining direction with text only prompt

If the subject did not have earbuds, only trials 1, 2, and
5 were played. Before each run, we started recording so that
we could ensure the EEG device was accurately responding
to blinks. When each trial started, we attempted to do a large
movement, usually a loud clap, to create a spike in the data
and see when a trial started.

We chose to replicate the MI dataset since it was simple
to set up, and we predicted that our 8-channel EEG would
be more responsive to a physical task than a mental task. We
were also curious to see if the resulting 8-channel readings
would resemble the 64-channel readings, and if so, whether

we could use the higher resolution data to predict the lower
resolution classification.

B. Data Processing

The OpenBCI MI dataset that we obtained was first
processed to crop out the non-experimental recorded
numbers, using accelerometer data to indicate the start of the
tests.

The data that we collected required processing before use.
A band pass filter filter on the 0.1 hz to 30 hz interval was
applied. ICA was employed to remove artifacts. To train the
ICA, the data was copied, then processed to allow better
component extraction. A high-pass filter was applied at 2hz
as proposed in [16], and the outlier epoch rejection algorithm
presented in [17] was employed to allow stronger ICA results.
Algorithms from the MNE library were employed to identify
artefactual ICA components, isolating muscle artifacts and eye
blink artifacts [18]. Since an inexpensive electroencephalo-
gram was used, no EOG channels were available. As such the
Fp1 and Fp2 channels were used as analogues. From there,
the original data could be processed with this ICA, leaving
out the identified artefactual components.

C. Model Creation

The first model uses a convolutional neural network (CNN)
with a masked autoencoder (MAE) to process the time-
series EEG data and classify target labels. The MAE model
architecture is inspired by the work of Pulver et al. [19] and
shown in Figure 3.

The data was collected from multiple subjects and pre-
processed before training. Missing values were forward-filled
to maintain continuity, and each feature was normalized to
have a mean of zero and a standard deviation of one. To
capture temporal dependencies, the data was segmented into
overlapping windows of 100 time steps with a step size of 50,
ensuring that each window served as an independent training
sample while preserving the sequential nature of the EEG data.

The overall model architecture consists of two main com-
ponents: a masked autoencoder for feature extraction and
a CNN for classification. The autoencoder applies random
masking to 25% of the input data before passing it through a
convolutional encoder with convolutional layers, max pooling
layers, and a dense layer to encode any meaningful feature
representations. A decoder reconstructs the original input using
transposed convolutional layers and a final convolutional layer
with sigmoid activation. The autoencoder is trained using
mean squared error (MSE) loss and the Adam optimizer. After
pretraining, the encoder is used in the CNN classifier, which
consists of a fully connected layer with ReLU activation, a
dropout layer (0.3 probability) to reduce overfitting, and a final
softmax layer that outputs class probabilities. The classifier
is trained with categorical cross-entropy loss and the Adam
optimizer.

A leave-one-subject-out (LOSO) cross-validation strategy is
used to evaluate the generalization performance of the model.



Fig. 3: Masked Autoencoder Model Architecture

In each iteration, one subject is left out for testing, while the
model is trained on the remaining subjects. Training is carried
out for 10 epochs with a batch size of 32, and validation is
carried out on the left-out subject.

The second models were created based on adding attention
layers to deep neural networks. The architecture is shown
in Figure 4. The models were evaluated using LOSO cross
validation and holdout validation.

For the ER dataset, we implemented a sliding window, with
a size of 100 time steps and a step size of 50, to segment
the continuous recordings. After preprocessing and filtering,
windows were labeled based on their corresponding game.

For the classification model, a CNN-LSTM architecture
with a custom attention layer was developed. Its key com-
ponents include:

1) Convolutional layers to extract local temporal features
2) Batch normalization and max pooling to stabilize and

downsample the activations
3) LSTM layers to capture sequential dependencies
4) A custom attention mechanism to focus on the most

informative time steps
5) Dense layers culminating in a softmax output for four-

class emotion classification

We chose a slightly different approach for the MI dataset,
opting for an EEGNet-inspired architecture, which was then
augmented with a transformer-based attention mechanism. The
model includes:

Fig. 4: Attention Model Architecture

1) A temporal convolutional layer to capture time-
dependent features

2) A depthwise convolution block for spatial filtering
3) A separable convolutional layer to combine temporal

features efficiently
4) An adaptive average pooling layer
5) A transformer encoder layer to emphasize the most

important features via attention
6) A final fully connected layer for binary classification.

III. RESULTS

Both models were evaluated using three datasets: Emotion
Recognition, Motor Imagery, and OpenBCI Motor Imagery,
using a leave-one-subject-out (LOSO) cross-validation ap-
proach. Performance was assessed using accuracy, precision,
recall, F1-score, and loss to evaluate the model’s classification
capabilities. The CNN model with a masked autoencoder
(MAE) performed very well on the Emotion Recognition
dataset, achieving high classification accuracy and balanced
precision and recall scores, indicating its effectiveness in
classifying emotional states. In contrast, performance on the
OpenBCI Motor Imagery dataset was lower, likely due to



increased noise and variability in the EEG signals, as this
dataset was collected independently rather than from an ex-
ternal source; the model’s ability to generalize was impacted
by inconsistencies in signal quality, making classification
more challenging. These results highlight the strengths of the
CNN with MAE approach while also identifying challenges
associated with working with noisier, independently collected
EEG data. Table 2 shows the exact metric scores of the CNN
model, with tables 4 and 5 as accuracy matrices.

TABLE II: CNN + MAE Model Performance Metrics

Dataset Accuracy Precision Recall F1-score Loss

Emotion Recognition 0.972 0.978 0.972 0.968 0.243
Motor Imagery 0.647 0.419 0.647 0.508 0.649
OpenBCI Motor Imagery 0.334 0.113 0.336 0.169 1.099

TABLE III: MAE model accuracy matrix for the Emotion
Recognition dataset.

Accuracy Matrix for Emotion Recognition Dataset

Calm Boring Funny Horror

Calm 0.954 0.034 0.011 0.001
Boring 0.001 0.995 0.004 0.000
Funny 0.004 0.009 0.982 0.004
Horror 0.003 0.009 0.033 0.955

TABLE IV: MAE model accuracy matrix for the Motor
Imagery dataset.

Accuracy Matrix for Motor Imagery Dataset

Left Hand (T1) Right Hand (T2)

Left Hand (T1) 1.00 0.00
Right Hand (T2) 1.00 0.00

TABLE V: MAE model accuracy matrix for the OpenBCI
Motor Imagery dataset.

Accuracy Matrix for Motor Imagery Dataset

Right Left Front

Right 0.202 0.126 0.672
Left 0.210 0.125 0.665
Front 0.216 0.125 0.660

IV. CONCLUSION

We achieved high accuracy without the LOSO protocol,
indicating that our models generally work in a typical machine

learning pipeline. In contrast, we found that our models were
not generalizable, as evidenced by the decrease in classifica-
tion accuracy while performing LOSO experiments. In addi-
tion, our models performed better on the emotion recognition
dataset. Although this may be due to high quality datasets, it
could also be a sign that our models are more suited to mental
tasks like emotion classification. Finally, although we aimed
to use these models to improve classification accuracy for low
resolution datasets, our own data was not well suited to our
models as indicated by the low accuracies. However, this may
simply be due to problems in the initial recording of the data
itself.

A. Discussion

Key limitations of this work include narrow demographics
for data collection, electrode placement inconsistencies. Trial
participants were recruited from the Queen’s University un-
dergraduate student body, and thus over represent associated
demographics compared to the general populace. Our headset
was a rigid 3D printed ”one size fits all” model, which did
not uniformly fit each trail participant. Therefore, channels do
not perfectly correspond to their intended locations.

B. Future Work

While this study showed the potential of EEG to classify
motor imagery, there are still several areas for future explo-
ration. Originally, one of the project’s main goals was to
demonstrate the viability of cheaper 8-channel EEG devices
for classification tasks. While our device showed some ability
to record viable data, there were also numerous limitations of
the hardware that could be addressed in the future. During the
data recording process, the observed signals were sometimes
unexpected and did not match the behaviour of the subject,
or were simply extremely noisy. Some common calibration
methods were attempted to address these issues, but to little
effect. If more time were allotted to the project, various other
techniques could be used to make the meaningful data more
visible. Some of these include individual channel calibration,
ensuring proper grounding, and mitigating electrical interfer-
ence.

Furthermore, different deep learning architectures could be
explored to improve feature extraction in the model. For
instance, a Graph Neural Network (GNN) could be used
to better capture the spatial and temporal patterns in the
EEG data, thus improving classification accuracy. Alongside
different architectures, data augmentation techniques could be
used to reduce the impact of having a low-resolution EEG.
Generative Adversarial Networks (GANs) would allow for the
creation of synthetic EEG data which could lead to a more
robust model performance.

Overall, although our research goal of achieving accurate
classification with a beginner EEG did not perform better
than random sampling, we still created models which were
successful on mid and high resolution data as per our other
research goals. With more resources, we would re-evaluate our



data collection process to gain clearer data, and improve our
model’s accuracies on low resolution datasets.
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